Wednesday, 14 May 2025
  • My Feed
  • My Interests
  • My Saves
  • History
  • Blog
Subscribe
Capernaum
  • Finance
    • Cryptocurrency
    • Stock Market
    • Real Estate
  • Lifestyle
    • Travel
    • Fashion
    • Cook
  • Technology
    • AI
    • Data Science
    • Machine Learning
  • Health
    HealthShow More
    Skincare as You Age Infographic
    Skincare as You Age Infographic

    When I dove into the scientific research for my book How Not…

    By capernaum
    Treating Fatty Liver Disease with Diet 
    Treating Fatty Liver Disease with Diet 

    What are the three sources of liver fat in fatty liver disease,…

    By capernaum
    Bird Flu: Emergence, Dangers, and Preventive Measures

    In the United States in January 2025 alone, approximately 20 million commercially-raised…

    By capernaum
    Inhospitable Hospital Food 
    Inhospitable Hospital Food 

    What do hospitals have to say for themselves about serving meals that…

    By capernaum
    Gaming the System: Cardiologists, Heart Stents, and Upcoding 
    Gaming the System: Cardiologists, Heart Stents, and Upcoding 

    Cardiologists can criminally game the system by telling patients they have much…

    By capernaum
  • Sport
  • 🔥
  • Cryptocurrency
  • Data Science
  • Travel
  • Real Estate
  • AI
  • Technology
  • Machine Learning
  • Stock Market
  • Finance
  • Fashion
Font ResizerAa
CapernaumCapernaum
  • My Saves
  • My Interests
  • My Feed
  • History
  • Travel
  • Health
  • Technology
Search
  • Pages
    • Home
    • Blog Index
    • Contact Us
    • Search Page
    • 404 Page
  • Personalized
    • My Feed
    • My Saves
    • My Interests
    • History
  • Categories
    • Technology
    • Travel
    • Health
Have an existing account? Sign In
Follow US
© 2022 Foxiz News Network. Ruby Design Company. All Rights Reserved.
Home » Blog » Huawei Introduces Pangu Ultra MoE: A 718B-Parameter Sparse Language Model Trained Efficiently on Ascend NPUs Using Simulation-Driven Architecture and System-Level Optimization
AITechnology

Huawei Introduces Pangu Ultra MoE: A 718B-Parameter Sparse Language Model Trained Efficiently on Ascend NPUs Using Simulation-Driven Architecture and System-Level Optimization

capernaum
Last updated: 2025-05-11 02:11
capernaum
Share
Huawei Introduces Pangu Ultra MoE: A 718B-Parameter Sparse Language Model Trained Efficiently on Ascend NPUs Using Simulation-Driven Architecture and System-Level Optimization
SHARE

Sparse large language models (LLMs) based on the Mixture of Experts (MoE) framework have gained traction for their ability to scale efficiently by activating only a subset of parameters per token. This dynamic sparsity allows MoE models to retain high representational capacity while limiting computation per token. However, with their increasing complexity and model size approaching trillions of parameters, training them efficiently requires algorithmic innovation and a tightly integrated hardware-software optimization. These challenges are especially relevant when deploying models on non-standard AI accelerators like Ascend NPUs, which require specific architectural alignment to deliver optimal performance.

A major technical challenge lies in the inefficient utilization of hardware resources while training sparse LLMs. Since only a portion of parameters are active for each token, workloads across devices become unbalanced, leading to synchronization delays and underused processing power. This imbalance also affects memory utilization as different experts process different numbers of tokens, sometimes exceeding capacity. These inefficiencies are compounded at a large scale, such as across thousands of AI chips, where communication and memory management bottlenecks significantly hinder throughput. The inability to fully harness the computational promise of sparsity in practice restricts the deployment of such models on hardware systems like Ascend NPUs.

Several strategies have been proposed to tackle these challenges. These include auxiliary losses to balance token distribution across experts and drop-and-pad strategies that limit expert overload by discarding tokens exceeding capacity. However, these techniques either reduce model performance or introduce inefficiencies in memory and computation. Other efforts include heuristic expert placement and traditional communication patterns like All-to-All dispatching, but these often fail to scale well or maintain high throughput. Moreover, standard memory-saving techniques like recomputation are usually coarse-grained, targeting whole layers instead of specific operations, leading to increased runtime without proportional memory savings.

Researchers from the Pangu team at Huawei Cloud introduced a highly structured and optimized training approach for large MoE models tailored to Ascend NPUs. They developed Pangu Ultra MoE, a sparse LLM with 718 billion parameters, focusing on aligning model architecture and system design with the capabilities of the Ascend hardware. Their approach begins with a simulation-based model configuration process that evaluates thousands of architecture variants using metrics grounded in actual hardware behavior. These simulations inform design decisions before any physical training is undertaken, thus saving substantial computational resources and enabling informed tuning of model hyperparameters.

The simulation method analyzes combinations of parameters such as the number of layers, hidden size, and expert count using a five-dimensional parallelism strategy that includes Pipeline Parallelism, Tensor Parallelism, Expert Parallelism, Data Parallelism, and Context Parallelism. The final model configuration adopted by Huawei included 256 experts, a hidden size 7680, and 61 transformer layers. To further optimize performance, researchers integrated an Adaptive Pipe Overlap mechanism to mask communication costs and used hierarchical All-to-All communication to reduce inter-node data transfer. They employed fine-grained recomputation, such as recomputing only key-value vectors in attention modules, and introduced tensor swapping to offload activation memory to host devices dynamically.

Pangu Ultra MoE achieved a Model Flops Utilization (MFU) of 30.0% and processed tokens at a rate of 1.46 million per second using 6,000 Ascend NPUs. The baseline MFU was 18.9% with 0.61 million tokens per second on 4,000 NPUs. The researchers also introduced dynamic expert placement strategies, improving device-level load balance and achieving a relative 10% MFU improvement. The model performed competitively on benchmark evaluations, attaining 81.3% on AIME2024, 97.4% on MATH500, 94.8% on CLUEWSC, and 91.5% on MMLU. In the healthcare domain, it outperformed DeepSeek R1 by scoring 87.1% on MedQA and 80.8% on MedMCQA, confirming its strength in domain-specific applications.

This study illustrates how the Pangu team at Huawei effectively tackled the core difficulties of training massive MoE models on specialized hardware. Their systematic architecture search, efficient communication techniques, and tailored memory optimizations represent a strong framework for scalable AI training. The work demonstrates practical ways to unlock the performance potential of sparse models and sets a direction for future system-aware AI design.


Check out Paper here. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 95k+ ML SubReddit.

Here’s a brief overview of what we’re building at Marktechpost:

  • ML News Community – r/machinelearningnews (92k+ members)
  • Newsletter– airesearchinsights.com/(30k+ subscribers)
  • miniCON AI Events – minicon.marktechpost.com
  • AI Reports & Magazines – magazine.marktechpost.com
  • AI Dev & Research News – marktechpost.com (1M+ monthly readers)

The post Huawei Introduces Pangu Ultra MoE: A 718B-Parameter Sparse Language Model Trained Efficiently on Ascend NPUs Using Simulation-Driven Architecture and System-Level Optimization appeared first on MarkTechPost.

Share This Article
Twitter Email Copy Link Print
Previous Article BTC Price Eyes New ATH As Donald Trump Comments On “Good Meeting” With China BTC Price Eyes New ATH As Donald Trump Comments On “Good Meeting” With China
Next Article XRP Price Analysis: Ripple Markets Enters 78% ‘Extreme Greed’ as US-China Trade Talks Begin in Switzerland XRP Price Analysis: Ripple Markets Enters 78% ‘Extreme Greed’ as US-China Trade Talks Begin in Switzerland
Leave a comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Your Trusted Source for Accurate and Timely Updates!

Our commitment to accuracy, impartiality, and delivering breaking news as it happens has earned us the trust of a vast audience. Using RSS feeds, we aggregate news from trusted sources to ensure real-time updates on the latest events and trends. Stay ahead with timely, curated information designed to keep you informed and engaged.
TwitterFollow
TelegramFollow
LinkedInFollow
- Advertisement -
Ad imageAd image

You Might Also Like

ServiceLink expands closing technology

By capernaum
Reinforcement Learning, Not Fine-Tuning: Nemotron-Tool-N1 Trains LLMs to Use Tools with Minimal Supervision and Maximum Generalization
AIMachine LearningTechnology

Reinforcement Learning, Not Fine-Tuning: Nemotron-Tool-N1 Trains LLMs to Use Tools with Minimal Supervision and Maximum Generalization

By capernaum

FHA cites AI emergence as it ‘archives’ inactive policy documents

By capernaum

Better leans on AI, sees first profitable month since 2022

By capernaum
Capernaum
Facebook Twitter Youtube Rss Medium

Capernaum :  Your instant connection to breaking news & stories . Stay informed with real-time coverage across  AI ,Data Science , Finance, Fashion , Travel, Health. Your trusted source for 24/7 insights and updates.

© Capernaum 2024. All Rights Reserved.

CapernaumCapernaum
Welcome Back!

Sign in to your account

Lost your password?