Wednesday, 14 May 2025
  • My Feed
  • My Interests
  • My Saves
  • History
  • Blog
Subscribe
Capernaum
  • Finance
    • Cryptocurrency
    • Stock Market
    • Real Estate
  • Lifestyle
    • Travel
    • Fashion
    • Cook
  • Technology
    • AI
    • Data Science
    • Machine Learning
  • Health
    HealthShow More
    Foods That Disrupt Our Microbiome
    Foods That Disrupt Our Microbiome

    Eating a diet filled with animal products can disrupt our microbiome faster…

    By capernaum
    Skincare as You Age Infographic
    Skincare as You Age Infographic

    When I dove into the scientific research for my book How Not…

    By capernaum
    Treating Fatty Liver Disease with Diet 
    Treating Fatty Liver Disease with Diet 

    What are the three sources of liver fat in fatty liver disease,…

    By capernaum
    Bird Flu: Emergence, Dangers, and Preventive Measures

    In the United States in January 2025 alone, approximately 20 million commercially-raised…

    By capernaum
    Inhospitable Hospital Food 
    Inhospitable Hospital Food 

    What do hospitals have to say for themselves about serving meals that…

    By capernaum
  • Sport
  • 🔥
  • Cryptocurrency
  • Data Science
  • Travel
  • Real Estate
  • AI
  • Technology
  • Machine Learning
  • Stock Market
  • Finance
  • Fashion
Font ResizerAa
CapernaumCapernaum
  • My Saves
  • My Interests
  • My Feed
  • History
  • Travel
  • Health
  • Technology
Search
  • Pages
    • Home
    • Blog Index
    • Contact Us
    • Search Page
    • 404 Page
  • Personalized
    • My Feed
    • My Saves
    • My Interests
    • History
  • Categories
    • Technology
    • Travel
    • Health
Have an existing account? Sign In
Follow US
© 2022 Foxiz News Network. Ruby Design Company. All Rights Reserved.
Home » Blog » How AI Agents Store, Forget, and Retrieve? A Fresh Look at Memory Operations for the Next-Gen LLMs
AITechnology

How AI Agents Store, Forget, and Retrieve? A Fresh Look at Memory Operations for the Next-Gen LLMs

capernaum
Last updated: 2025-05-06 01:26
capernaum
Share
How AI Agents Store, Forget, and Retrieve? A Fresh Look at Memory Operations for the Next-Gen LLMs
SHARE

Memory plays a crucial role in LLM-based AI systems, supporting sustained, coherent interactions over time. While earlier surveys have explored memory about LLMs, they often lack attention to the fundamental operations governing memory functions. Key components like memory storage, retrieval, and memory-grounded generation have been studied in isolation, but a unified framework that systematically integrates these processes remains underdeveloped. Although a few recent efforts have proposed operational views of memory to categorize existing work, the field still lacks cohesive memory architectures that clearly define how these atomic operations interact.

Furthermore, existing surveys tend to address only specific subtopics within the broader memory landscape, such as long-context handling, long-term memory, personalization, or knowledge editing. These fragmented approaches often miss essential operations like indexing and fail to offer comprehensive overviews of memory dynamics. Additionally, most prior work does not establish a clear research scope or provide structured benchmarks and tool coverage, limiting their practical value for guiding future advancements in memory for AI systems. 

Researchers from the Chinese University, the University of Edinburgh, HKUST, and the Poisson Lab at Huawei UK R&D Ltd. present a detailed survey on memory in AI systems. They classify memory into parametric, contextual-structured, and contextual-unstructured types, distinguishing between short-term and long-term memory inspired by cognitive psychology. Six fundamental operations—consolidation, updating, indexing, forgetting, retrieval, and compression—are defined and mapped to key research areas, including long-term memory, long-context modeling, parametric modification, and multi-source integration. Based on an analysis of over 30,000 papers using the Relative Citation Index, the survey also outlines tools, benchmarks, and future directions. 

The researchers first develop a three‐part taxonomy of AI memory—parametric (model weights), contextual‐structured (e.g., indexed dialogue histories), and contextual‐unstructured (raw text or embeddings)—and distinguish short‐ versus long‐term spans. They then define six core memory operations: consolidation (storing new information), updating (modifying existing entries), indexing (organizing for fast access), forgetting (removing stale data), retrieval (fetching relevant content), and compression (distilling memories). To ground this framework, they mined over 30,000 top‐tier AI papers (2022–2025), ranked them by Relative Citation Index, and clustered high‐impact works into four themes—long‐term memory, long‐context modeling, parametric editing, and multi‐source integration—thereby mapping each operation and memory type to active research areas and highlighting key benchmarks and tools. 

The study describes a layered ecosystem of memory-centric AI systems that support long-term context management, user modeling, knowledge retention, and adaptive behavior. This ecosystem is structured across four tiers: foundational components (such as vector stores, large language models like Llama and GPT-4, and retrieval mechanisms like FAISS and BM25), frameworks for memory operations (e.g., LangChain and LlamaIndex), memory layer systems for orchestration and persistence (such as Memary and Memobase), and end-user-facing products (including Me. bot and ChatGPT). These tools provide infrastructure for memory integration, enabling capabilities like grounding, similarity search, long-context understanding, and personalized AI interactions.

The survey also discusses open challenges and future research directions in AI memory. It highlights the importance of spatio-temporal memory, which balances historical context with real-time updates for adaptive reasoning. Key challenges include parametric memory retrieval, lifelong learning, and efficient knowledge management across memory types. Additionally, the paper draws inspiration from biological memory models, emphasizing dual-memory architectures and hierarchical memory structures. Future work should focus on unifying memory representations, supporting multi-agent memory systems, and addressing security concerns, particularly memory safety and malicious attacks in machine learning techniques. 


Check out the Paper. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 90k+ ML SubReddit. For Promotion and Partnerships, please talk us.

🔥 [Register Now] miniCON Virtual Conference on AGENTIC AI: FREE REGISTRATION + Certificate of Attendance + 4 Hour Short Event (May 21, 9 am- 1 pm PST) + Hands on Workshop

The post How AI Agents Store, Forget, and Retrieve? A Fresh Look at Memory Operations for the Next-Gen LLMs appeared first on MarkTechPost.

Share This Article
Twitter Email Copy Link Print
Previous Article Ethereum Macro Trend Oscillator Shows Green Might Be On The Horizon Ethereum Macro Trend Oscillator Shows Green Might Be On The Horizon
Next Article A Coding Guide to Compare Three Stability AI Diffusion Models (v1.5, v2-Base & SD3-Medium) Diffusion Capabilities Side-by-Side in Google Colab Using Gradio A Coding Guide to Compare Three Stability AI Diffusion Models (v1.5, v2-Base & SD3-Medium) Diffusion Capabilities Side-by-Side in Google Colab Using Gradio
Leave a comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Your Trusted Source for Accurate and Timely Updates!

Our commitment to accuracy, impartiality, and delivering breaking news as it happens has earned us the trust of a vast audience. Using RSS feeds, we aggregate news from trusted sources to ensure real-time updates on the latest events and trends. Stay ahead with timely, curated information designed to keep you informed and engaged.
TwitterFollow
TelegramFollow
LinkedInFollow
- Advertisement -
Ad imageAd image

You Might Also Like

Linux Foundation quietly became open source’s sprawling kingmaker
Data Science

Linux Foundation quietly became open source’s sprawling kingmaker

By capernaum
The “know-it-all” AI and the open source alternative
AIData Science

The “know-it-all” AI and the open source alternative

By capernaum
A Step-by-Step Guide to Build a Fast Semantic Search and RAG QA Engine on Web-Scraped Data Using Together AI Embeddings, FAISS Retrieval, and LangChain
AI

A Step-by-Step Guide to Build a Fast Semantic Search and RAG QA Engine on Web-Scraped Data Using Together AI Embeddings, FAISS Retrieval, and LangChain

By capernaum
Agent-Based Debugging Gets a Cost-Effective Alternative: Salesforce AI Presents SWERank for Accurate and Scalable Software Issue Localization
AI

Agent-Based Debugging Gets a Cost-Effective Alternative: Salesforce AI Presents SWERank for Accurate and Scalable Software Issue Localization

By capernaum
Capernaum
Facebook Twitter Youtube Rss Medium

Capernaum :  Your instant connection to breaking news & stories . Stay informed with real-time coverage across  AI ,Data Science , Finance, Fashion , Travel, Health. Your trusted source for 24/7 insights and updates.

© Capernaum 2024. All Rights Reserved.

CapernaumCapernaum
Welcome Back!

Sign in to your account

Lost your password?