Wednesday, 14 May 2025
  • My Feed
  • My Interests
  • My Saves
  • History
  • Blog
Subscribe
Capernaum
  • Finance
    • Cryptocurrency
    • Stock Market
    • Real Estate
  • Lifestyle
    • Travel
    • Fashion
    • Cook
  • Technology
    • AI
    • Data Science
    • Machine Learning
  • Health
    HealthShow More
    Foods That Disrupt Our Microbiome
    Foods That Disrupt Our Microbiome

    Eating a diet filled with animal products can disrupt our microbiome faster…

    By capernaum
    Skincare as You Age Infographic
    Skincare as You Age Infographic

    When I dove into the scientific research for my book How Not…

    By capernaum
    Treating Fatty Liver Disease with Diet 
    Treating Fatty Liver Disease with Diet 

    What are the three sources of liver fat in fatty liver disease,…

    By capernaum
    Bird Flu: Emergence, Dangers, and Preventive Measures

    In the United States in January 2025 alone, approximately 20 million commercially-raised…

    By capernaum
    Inhospitable Hospital Food 
    Inhospitable Hospital Food 

    What do hospitals have to say for themselves about serving meals that…

    By capernaum
  • Sport
  • 🔥
  • Cryptocurrency
  • Data Science
  • Travel
  • Real Estate
  • AI
  • Technology
  • Machine Learning
  • Stock Market
  • Finance
  • Fashion
Font ResizerAa
CapernaumCapernaum
  • My Saves
  • My Interests
  • My Feed
  • History
  • Travel
  • Health
  • Technology
Search
  • Pages
    • Home
    • Blog Index
    • Contact Us
    • Search Page
    • 404 Page
  • Personalized
    • My Feed
    • My Saves
    • My Interests
    • History
  • Categories
    • Technology
    • Travel
    • Health
Have an existing account? Sign In
Follow US
© 2022 Foxiz News Network. Ruby Design Company. All Rights Reserved.
Home » Blog » Exploring the Sparse Frontier: How Researchers from Edinburgh, Cohere, and Meta Are Rethinking Attention Mechanisms for Long-Context LLMs
AITechnology

Exploring the Sparse Frontier: How Researchers from Edinburgh, Cohere, and Meta Are Rethinking Attention Mechanisms for Long-Context LLMs

capernaum
Last updated: 2025-04-30 21:44
capernaum
Share
Exploring the Sparse Frontier: How Researchers from Edinburgh, Cohere, and Meta Are Rethinking Attention Mechanisms for Long-Context LLMs
SHARE

Sparse attention is emerging as a compelling approach to improve the ability of Transformer-based LLMs to handle long sequences. This is particularly important because the standard self-attention mechanism, central to LLMs, scales poorly with sequence length—its computational cost grows quadratically during the prefilling phase, increasing time-to-first-token and making deployment expensive. During the decoding phase, dense attention leads to a cache that expands linearly with the sequence length, resulting in significant memory bandwidth usage for accessing key-value pairs. These inefficiencies pose substantial challenges for both long-context modeling and scaling at inference time.

Sparse attention attempts to reduce this computational burden by approximating dense attention using only a subset of key-query pairs. This has the potential to significantly accelerate long-sequence processing and reduce memory requirements, while still preserving model accuracy. However, despite its promise, sparse attention has yet to be thoroughly evaluated at scale. Existing studies have only scratched the surface, often focusing on limited model sizes, restricted sequence lengths, and specific applications such as multi-turn dialogue. Furthermore, the datasets used in these studies usually vary in length, making it difficult to analyze how performance scales with longer sequences. As a result, the practical viability and robustness of sparse attention strategies remain underexplored.

Researchers from the University of Edinburgh, Cohere, and Meta conducted an extensive evaluation of training-free sparse attention methods across various model sizes, sequence lengths, and sparsity levels. Their study involved nine long-context tasks, including new natural language-based benchmarks designed for controlled and realistic testing. Key findings reveal that for long sequences, large, sparse models outperform smaller, dense ones under fixed computational budgets. While higher sparsity is more tolerable during decoding, no single sparse strategy works universally across tasks. They also introduce scaling laws for sparse attention and release standardized implementations to support reproducible research and guide informed deployment decisions.

Sparse attention aims to reduce computational and memory costs in Transformers by selectively computing only important query–key interactions. This helps speed up full-sequence “prefilling” and reduce memory load during “decoding.” Key techniques include selecting which parts of the attention matrix to retain (e.g., blocks, windows), estimating importance using fixed or dynamic patterns, and allocating computational budgets either uniformly or adaptively across layers and heads. For decoding, methods either evict less useful key–value pairs to conserve memory or maintain the full cache and load only the necessary parts, balancing speed, memory efficiency, and information retention during generation.

The study investigates sparse attention methods in long-context models, analyzing performance under fixed computational budgets. At shorter sequence lengths (32k tokens), smaller dense models perform more efficiently, while at longer lengths (128k), larger sparse models are preferable. Compression tolerance varies by model size and task, with larger models maintaining performance even at 20× sparsity. However, some tasks remain sensitive to high compression. No single method consistently excels; chunk-based methods, such as Quest, perform best in decoding, while Vertical-Slash works well in prefilling for simple tasks. A log-linear scaling law effectively predicts accuracy trends across model size, sequence length, and compression ratio.

In conclusion, the study presents a comprehensive evaluation of sparse attention methods across various model sizes (up to 72 billion parameters), sequence lengths (up to 128 kilobytes), and sparsity levels (up to 95%) on diverse long-sequence tasks. It finds that, under fixed compute (isoFLOPS), large sparse models outperform smaller dense ones for long contexts. While high sparsity (10–15×) can retain accuracy, performance drops significantly on some tasks even at moderate compression. The best sparsity strategy varies by task and phase (prefilling versus decoding), highlighting the absence of a universal solution. The authors also propose reliable scaling laws, suggesting sparse attention is promising but requires careful, task-specific application.


Check out the Paper. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 90k+ ML SubReddit.

🔥 [Register Now] miniCON Virtual Conference on AGENTIC AI: FREE REGISTRATION + Certificate of Attendance + 4 Hour Short Event (May 21, 9 am- 1 pm PST) + Hands on Workshop

The post Exploring the Sparse Frontier: How Researchers from Edinburgh, Cohere, and Meta Are Rethinking Attention Mechanisms for Long-Context LLMs appeared first on MarkTechPost.

Share This Article
Twitter Email Copy Link Print
Previous Article VeChain Is Building the ‘Gravity of Trust’—And the World Is Already in Its Orbit VeChain Is Building the ‘Gravity of Trust’—And the World Is Already in Its Orbit
Next Article Mem0: A Scalable Memory Architecture Enabling Persistent, Structured Recall for Long-Term AI Conversations Across Sessions Mem0: A Scalable Memory Architecture Enabling Persistent, Structured Recall for Long-Term AI Conversations Across Sessions
Leave a comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Your Trusted Source for Accurate and Timely Updates!

Our commitment to accuracy, impartiality, and delivering breaking news as it happens has earned us the trust of a vast audience. Using RSS feeds, we aggregate news from trusted sources to ensure real-time updates on the latest events and trends. Stay ahead with timely, curated information designed to keep you informed and engaged.
TwitterFollow
TelegramFollow
LinkedInFollow
- Advertisement -
Ad imageAd image

You Might Also Like

ARIVE locks up another partnership, this time with Union Home Mortgage

By capernaum
Apple research paper unveils Matrix3D for 3D content generation
Data Science

Apple research paper unveils Matrix3D for 3D content generation

By capernaum
Microsoft’s ADeLe wants to give your AI a cognitive profile
AIData Science

Microsoft’s ADeLe wants to give your AI a cognitive profile

By capernaum
Is your super helpful generative AI partner secretly making your job boring?
AIData Science

Is your super helpful generative AI partner secretly making your job boring?

By capernaum
Capernaum
Facebook Twitter Youtube Rss Medium

Capernaum :  Your instant connection to breaking news & stories . Stay informed with real-time coverage across  AI ,Data Science , Finance, Fashion , Travel, Health. Your trusted source for 24/7 insights and updates.

© Capernaum 2024. All Rights Reserved.

CapernaumCapernaum
Welcome Back!

Sign in to your account

Lost your password?