Tuesday, 13 May 2025
  • My Feed
  • My Interests
  • My Saves
  • History
  • Blog
Subscribe
Capernaum
  • Finance
    • Cryptocurrency
    • Stock Market
    • Real Estate
  • Lifestyle
    • Travel
    • Fashion
    • Cook
  • Technology
    • AI
    • Data Science
    • Machine Learning
  • Health
    HealthShow More
    Skincare as You Age Infographic
    Skincare as You Age Infographic

    When I dove into the scientific research for my book How Not…

    By capernaum
    Treating Fatty Liver Disease with Diet 
    Treating Fatty Liver Disease with Diet 

    What are the three sources of liver fat in fatty liver disease,…

    By capernaum
    Bird Flu: Emergence, Dangers, and Preventive Measures

    In the United States in January 2025 alone, approximately 20 million commercially-raised…

    By capernaum
    Inhospitable Hospital Food 
    Inhospitable Hospital Food 

    What do hospitals have to say for themselves about serving meals that…

    By capernaum
    Gaming the System: Cardiologists, Heart Stents, and Upcoding 
    Gaming the System: Cardiologists, Heart Stents, and Upcoding 

    Cardiologists can criminally game the system by telling patients they have much…

    By capernaum
  • Sport
  • 🔥
  • Cryptocurrency
  • Data Science
  • Travel
  • Real Estate
  • AI
  • Technology
  • Machine Learning
  • Stock Market
  • Finance
  • Fashion
Font ResizerAa
CapernaumCapernaum
  • My Saves
  • My Interests
  • My Feed
  • History
  • Travel
  • Health
  • Technology
Search
  • Pages
    • Home
    • Blog Index
    • Contact Us
    • Search Page
    • 404 Page
  • Personalized
    • My Feed
    • My Saves
    • My Interests
    • History
  • Categories
    • Technology
    • Travel
    • Health
Have an existing account? Sign In
Follow US
© 2022 Foxiz News Network. Ruby Design Company. All Rights Reserved.
Home » Blog » BEAL: A Bayesian Deep Active Learning Method for Efficient Deep Multi-Label Text Classification
AITechnology

BEAL: A Bayesian Deep Active Learning Method for Efficient Deep Multi-Label Text Classification

capernaum
Last updated: 2024-11-17 11:00
capernaum
Share
BEAL: A Bayesian Deep Active Learning Method for Efficient Deep Multi-Label Text Classification
SHARE

Multi-label text classification (MLTC) assigns multiple relevant labels to a text. While deep learning models have achieved state-of-the-art results in this area, they require large amounts of labeled data, which is costly and time-consuming. Active learning helps optimize this process by selecting the most informative unlabeled samples for annotation, reducing the labeling effort. However, most existing active learning methods are designed for traditional single-label models and do not directly apply to deep multi-label models. Given the complexity of multi-label tasks and the high cost of annotations, there is a need for active learning techniques tailored to deep multi-label classification.

Active learning enables a model to request labels for the most informative unlabeled samples, reducing annotation costs. Common active learning approaches include membership query synthesis, stream-based selective sampling, and pool-based sampling, focusing on the latter in this work. Uncertainty-based sampling is often used in multi-label classification, but challenges still must be solved in applying active learning to deep multi-label models. While Bayesian deep learning methods have shown promise for uncertainty estimation, most research has focused on single-label tasks. 

Researchers from the Institute of Automation, Chinese Academy of Sciences, and other institutions propose BEAL, a deep active learning method for MLTC. BEAL uses Bayesian deep learning with dropout to infer the model’s posterior predictive distribution and introduces a new expected confidence-based acquisition function to select uncertain samples. Experiments with a BERT-based MLTC model on benchmark datasets like AAPD and StackOverflow show that BEAL improves training efficiency, achieving convergence with fewer labeled samples. This method can be extended to other multi-label classification tasks and significantly reduces labeled data requirements compared to existing methods.

The methodology introduces a batch-mode active learning framework for deep multi-label text classification. Starting with a small labeled dataset, the framework iteratively selects unlabeled samples for annotation based on an acquisition function. This function chooses samples with the lowest expected confidence, measured by the model’s predictive uncertainty. Bayesian deep learning calculates the posterior predictive distribution using Monte Carlo dropout, approximating the model’s confidence. The acquisition function selects a batch of samples with the lowest expected confidence for labeling, improving the model’s efficiency by reducing the need for labeled data. The process continues until the model’s performance converges.

In this study, the authors evaluate the BEAL method for deep multi-label text classification using two benchmark datasets: AAPD and StackOverflow. The process is compared with several active learning strategies, including random sampling, BADGE, BALD, Core-Set, and the full-data approach. BEAL outperforms these methods by selecting the most informative samples based on posterior predictive distribution, reducing the need for labeled data. Results show that BEAL achieves the highest performance with fewer labeled samples than others, requiring only 64% of labeled samples on AAPD and 40% on StackOverflow. An ablation study highlights the advantage of using Bayesian deep learning in BEAL.

In conclusion, the study introduces BEAL, an active learning method for deep MLTC models. BEAL uses Bayesian deep learning to infer the posterior predictive distribution and defines an expected confidence-based acquisition function to select uncertain samples for training. Experimental results show that BEAL outperforms other active learning methods, enabling more efficient model training with fewer labeled samples. This is valuable in real-world applications where obtaining large-scale labeled data is difficult. Future work will explore integrating diversity-based methods to reduce further the labeled data required for effective training of MLTC models.


Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. If you like our work, you will love our newsletter.. Don’t Forget to join our 55k+ ML SubReddit.

[FREE AI WEBINAR] Implementing Intelligent Document Processing with GenAI in Financial Services and Real Estate Transactions– From Framework to Production

The post BEAL: A Bayesian Deep Active Learning Method for Efficient Deep Multi-Label Text Classification appeared first on MarkTechPost.

Share This Article
Twitter Email Copy Link Print
Previous Article Whale Alert: XRP Accumulation Reaches 5-Year Peak – Details Whale Alert: XRP Accumulation Reaches 5-Year Peak – Details
Next Article Shiba Inu On Fire With Over 410 Trillion Tokens Destroyed Amid Burn Rate Growth Shiba Inu On Fire With Over 410 Trillion Tokens Destroyed Amid Burn Rate Growth
Leave a comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Your Trusted Source for Accurate and Timely Updates!

Our commitment to accuracy, impartiality, and delivering breaking news as it happens has earned us the trust of a vast audience. Using RSS feeds, we aggregate news from trusted sources to ensure real-time updates on the latest events and trends. Stay ahead with timely, curated information designed to keep you informed and engaged.
TwitterFollow
TelegramFollow
LinkedInFollow
- Advertisement -
Ad imageAd image

You Might Also Like

Reinforcement Learning, Not Fine-Tuning: Nemotron-Tool-N1 Trains LLMs to Use Tools with Minimal Supervision and Maximum Generalization
AIMachine LearningTechnology

Reinforcement Learning, Not Fine-Tuning: Nemotron-Tool-N1 Trains LLMs to Use Tools with Minimal Supervision and Maximum Generalization

By capernaum

FHA cites AI emergence as it ‘archives’ inactive policy documents

By capernaum

Better leans on AI, sees first profitable month since 2022

By capernaum
A Step-by-Step Guide to Deploy a Fully Integrated Firecrawl-Powered MCP Server on Claude Desktop with Smithery and VeryaX
AI

A Step-by-Step Guide to Deploy a Fully Integrated Firecrawl-Powered MCP Server on Claude Desktop with Smithery and VeryaX

By capernaum
Capernaum
Facebook Twitter Youtube Rss Medium

Capernaum :  Your instant connection to breaking news & stories . Stay informed with real-time coverage across  AI ,Data Science , Finance, Fashion , Travel, Health. Your trusted source for 24/7 insights and updates.

© Capernaum 2024. All Rights Reserved.

CapernaumCapernaum
Welcome Back!

Sign in to your account

Lost your password?